Thursday, August 30, 2018

On the History of Mathematical Typography

Eddie Smith:

Gutenberg’s key innovation was really in the typecasting process. Before Gutenberg’s time, creating letters out of metal, wood, and even ceramic was extremely time consuming and difficult to do in large quantities. Gutenberg revolutionized hot metal typesetting by coming up with an alloy mostly made of lead that could be melted and poured into a letter mold called a matrix. He also had to invent an ink that would stick to lead.


The Monotype System is an exquisite piece of engineering, and in many ways represents a perfection of Gutenberg’s original workflow using Industrial Age technology. It’s also a fantastic example of early “programming” since it made use of hole-punched paper tape to instruct the operations of a machine—an innovation that many people associate with the rise of computing in the mid-20th century, but was in use as early as 1725.

Like Gutenberg, Lanston sought to refine the workflow of typesetting by dividing it into specialized sub-steps. The Monotype System consisted of two machines: a giant keyboard and type caster.


The Selectric’s key feature was a golf ball-sized typeball that could be interchanged. One of the typeballs IBM made contained math symbols, so a typist could simply swap out typeballs as needed to produce a paper containing math notation. However, the printed results were arguably worse aesthetically than handwritten math and not even comparable to Monotype.


TeX was a remarkable invention, but its original form could only be used in a handful of locations—a few mainframe computers here and there. What really allowed TeX to succeed was its portability—something made possible by TeX82, a second version of TeX created for multiple platforms in 1982 with the help of Frank Liang.

1 Comment RSS · Twitter

Leave a Comment